
本文是《PyTorch官方教程中文版》系列文章之一,目录链接:[翻译]PyTorch官方教程中文版:目录
本文翻译自PyTorch官方网站,链接地址:Optimization
优化模型参数
现在我们有了模型和数据,是时候进行训练了。训练模型是一个迭代的过程,每次迭代,模型首先执行推理并输出推理结果,然后计算推理结果的误差,最后使用梯度优化模型的参数。有关这一过程的更多细节请观看视频“backpropagation from 3Blue1Brown”。
已有代码
我们将使用在《数据集和数据加载器》和《构建神经网络》这两篇文章中的已有代码。
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor()
)
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor()
)
train_dataloader = DataLoader(training_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork()
上述代码输出:
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to data/FashionMNIST/raw/train-images-idx3-ubyte.gz
0%| | 0/26421880 [00:00<?, ?it/s]
0%| | 65536/26421880 [00:00<01:11, 368255.79it/s]
1%| | 229376/26421880 [00:00<00:38, 688549.60it/s]
3%|3 | 819200/26421880 [00:00<00:11, 2313186.02it/s]
6%|6 | 1703936/26421880 [00:00<00:06, 3617627.02it/s]
15%|#5 | 3964928/26421880 [00:00<00:02, 8602348.57it/s]
23%|##2 | 5963776/26421880 [00:00<00:02, 9951096.66it/s]
33%|###2 | 8617984/26421880 [00:01<00:01, 13917394.47it/s]
41%|#### | 10715136/26421880 [00:01<00:01, 13488072.19it/s]
50%|##### | 13303808/26421880 [00:01<00:00, 16300023.87it/s]
59%|#####8 | 15564800/26421880 [00:01<00:00, 15297545.00it/s]
69%|######8 | 18153472/26421880 [00:01<00:00, 17670252.93it/s]
77%|#######7 | 20414464/26421880 [00:01<00:00, 16207901.21it/s]
87%|########6 | 22970368/26421880 [00:01<00:00, 18274314.00it/s]
96%|#########5| 25264128/26421880 [00:01<00:00, 16669617.45it/s]
100%|##########| 26421880/26421880 [00:01<00:00, 13254361.16it/s]
Extracting data/FashionMNIST/raw/train-images-idx3-ubyte.gz to data/FashionMNIST/raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to data/FashionMNIST/raw/train-labels-idx1-ubyte.gz
0%| | 0/29515 [00:00<?, ?it/s]
100%|##########| 29515/29515 [00:00<00:00, 329995.61it/s]
Extracting data/FashionMNIST/raw/train-labels-idx1-ubyte.gz to data/FashionMNIST/raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz
0%| | 0/4422102 [00:00<?, ?it/s]
1%|1 | 65536/4422102 [00:00<00:11, 365836.10it/s]
5%|5 | 229376/4422102 [00:00<00:06, 687195.68it/s]
14%|#4 | 622592/4422102 [00:00<00:02, 1706700.21it/s]
32%|###1 | 1409024/4422102 [00:00<00:01, 3000999.19it/s]
66%|######5 | 2916352/4422102 [00:00<00:00, 6200376.74it/s]
100%|##########| 4422102/4422102 [00:00<00:00, 5457885.10it/s]
Extracting data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to data/FashionMNIST/raw
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz
Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz
0%| | 0/5148 [00:00<?, ?it/s]
100%|##########| 5148/5148 [00:00<00:00, 40059883.10it/s]
Extracting data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to data/FashionMNIST/raw
超参数
超参数是用于控制模型优化过程的可调整参数,设置不同的超参数值会影响模型的训练效果和收敛率(关于调整超参数的更多信息请阅读《Hyperparameter tuning with Ray Tune》)。
我们定义了下列超参数:
- 周期数 - 整个数据集的迭代次数
- 批次大小 - 每次处理的数据个数(译者注:越大越耗内存/显存,但整体速度更快)
- 学习率 - 在每个批次/周期中调整模型参数的速率。较小的值会导致学习速度变慢,而较大的值可能会导致训练期间不可预测的行为。
learning_rate = 1e-3
batch_size = 64
epochs = 5
优化循环
设置好了我们的超参数,就可以使用优化循环来训练模型了,优化循环的每次迭代称为一个周期(epoch)。
每个周期主要包含下列两项主要工作:
- 训练循环 - 遍历训练集并优化参数,尝试找到最优参数。
- 校验/测试循环 - 遍历测试集,检查模型性能是否正在提高。
让我们简单地熟悉一下训练循环中使用的一些概念。
损失函数
在训练数据上进行推理时,未训练的神经网络可能无法给出正确的答案。损失函数计算推理的结果与正确答案的差异程度,这就是损失函数的作用。为了计算损失,我们将给定样本数据输入神经网络,并将神经网络的输出与标签值进行比较。
常见的损失函数有用于回归任务的 nn.MSELoss,以及用于分类的 nn.NLLLoss,合并了 nn.LogSoftmax 和 nn.NLLLoss 的 nn.CrossEntropyLoss等。
我们把模型的输出数据传递给 nn.CrossEntropyLoss 函数,它会计算误差。
# Initialize the loss function
loss_fn = nn.CrossEntropyLoss()
优化器
优化是通过模型误差调整模型参数的过程,优化算法决定了如何执行这一过程(在本例中,我们使用随机梯度下降算法(Stochastic Gradient Descent))。所有优化逻辑都封装在优化器对象中,本文使用 SGD 优化器。PyTorch中还有许多不同的优化器,例如 ADAM 和 RMSProp等,它们适用于其他类型的模型和数据。
我们通过注册需要训练的模型参数,并传入学习率超参数来初始化优化器。
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
在训练循环中,需要让优化器执行下列三个步骤:
- 调用 optimizer.zero_grad() 重置模型参数的梯度。默认情况下梯度是叠加的,为了防止重复计算,我们每次迭代时都明确的将其归零。
- 通过调用 loss.backward() 函数反向传播误差(loss),PyTorch自动计算每个参数关于误差的梯度。
- 计算得到梯度后,我们调用 optimizer.step(),利用梯度来调整模型的参数。
完整实现
我们定义了 train_loop 函数作为优化循环,定义了 test_loop 函数来评估模型性能。
def train_loop(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
# Set the model to training mode - important for batch normalization and dropout layers
# Unnecessary in this situation but added for best practices
model.train()
for batch, (X, y) in enumerate(dataloader):
# Compute prediction and loss
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
loss.backward()
optimizer.step()
optimizer.zero_grad()
if batch % 100 == 0:
loss, current = loss.item(), (batch + 1) * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test_loop(dataloader, model, loss_fn):
# Set the model to evaluation mode - important for batch normalization and dropout layers
# Unnecessary in this situation but added for best practices
model.eval()
size = len(dataloader.dataset)
num_batches = len(dataloader)
test_loss, correct = 0, 0
# Evaluating the model with torch.no_grad() ensures that no gradients are computed during test mode
# also serves to reduce unnecessary gradient computations and memory usage for tensors with requires_grad=True
with torch.no_grad():
for X, y in dataloader:
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
我们初始化了损失函数和优化器,并将其传递给train_loop和test_loop函数。你可以尝试着随意增加或减少周期数,观察模型的性能的变化情况。
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
epochs = 10
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train_loop(train_dataloader, model, loss_fn, optimizer)
test_loop(test_dataloader, model, loss_fn)
print("Done!")
上述代码输出:
Epoch 1
-------------------------------
loss: 2.298730 [ 64/60000]
loss: 2.289123 [ 6464/60000]
loss: 2.273286 [12864/60000]
loss: 2.269406 [19264/60000]
loss: 2.249603 [25664/60000]
loss: 2.229407 [32064/60000]
loss: 2.227368 [38464/60000]
loss: 2.204261 [44864/60000]
loss: 2.206193 [51264/60000]
loss: 2.166651 [57664/60000]
Test Error:
Accuracy: 50.9%, Avg loss: 2.166725
Epoch 2
-------------------------------
loss: 2.176750 [ 64/60000]
loss: 2.169595 [ 6464/60000]
loss: 2.117500 [12864/60000]
loss: 2.129272 [19264/60000]
loss: 2.079674 [25664/60000]
loss: 2.032928 [32064/60000]
loss: 2.050115 [38464/60000]
loss: 1.985236 [44864/60000]
loss: 1.987887 [51264/60000]
loss: 1.907162 [57664/60000]
Test Error:
Accuracy: 55.9%, Avg loss: 1.915486
Epoch 3
-------------------------------
loss: 1.951612 [ 64/60000]
loss: 1.928685 [ 6464/60000]
loss: 1.815709 [12864/60000]
loss: 1.841552 [19264/60000]
loss: 1.732467 [25664/60000]
loss: 1.692914 [32064/60000]
loss: 1.701714 [38464/60000]
loss: 1.610632 [44864/60000]
loss: 1.632870 [51264/60000]
loss: 1.514263 [57664/60000]
Test Error:
Accuracy: 58.8%, Avg loss: 1.541525
Epoch 4
-------------------------------
loss: 1.616448 [ 64/60000]
loss: 1.582892 [ 6464/60000]
loss: 1.427595 [12864/60000]
loss: 1.487950 [19264/60000]
loss: 1.359332 [25664/60000]
loss: 1.364817 [32064/60000]
loss: 1.371491 [38464/60000]
loss: 1.298706 [44864/60000]
loss: 1.336201 [51264/60000]
loss: 1.232145 [57664/60000]
Test Error:
Accuracy: 62.2%, Avg loss: 1.260237
Epoch 5
-------------------------------
loss: 1.345538 [ 64/60000]
loss: 1.327798 [ 6464/60000]
loss: 1.153802 [12864/60000]
loss: 1.254829 [19264/60000]
loss: 1.117322 [25664/60000]
loss: 1.153248 [32064/60000]
loss: 1.171765 [38464/60000]
loss: 1.110263 [44864/60000]
loss: 1.154467 [51264/60000]
loss: 1.070921 [57664/60000]
Test Error:
Accuracy: 64.1%, Avg loss: 1.089831
Epoch 6
-------------------------------
loss: 1.166889 [ 64/60000]
loss: 1.170514 [ 6464/60000]
loss: 0.979435 [12864/60000]
loss: 1.113774 [19264/60000]
loss: 0.973411 [25664/60000]
loss: 1.015192 [32064/60000]
loss: 1.051113 [38464/60000]
loss: 0.993591 [44864/60000]
loss: 1.039709 [51264/60000]
loss: 0.971077 [57664/60000]
Test Error:
Accuracy: 65.8%, Avg loss: 0.982440
Epoch 7
-------------------------------
loss: 1.045165 [ 64/60000]
loss: 1.070583 [ 6464/60000]
loss: 0.862304 [12864/60000]
loss: 1.022265 [19264/60000]
loss: 0.885213 [25664/60000]
loss: 0.919528 [32064/60000]
loss: 0.972762 [38464/60000]
loss: 0.918728 [44864/60000]
loss: 0.961629 [51264/60000]
loss: 0.904379 [57664/60000]
Test Error:
Accuracy: 66.9%, Avg loss: 0.910167
Epoch 8
-------------------------------
loss: 0.956964 [ 64/60000]
loss: 1.002171 [ 6464/60000]
loss: 0.779057 [12864/60000]
loss: 0.958409 [19264/60000]
loss: 0.827240 [25664/60000]
loss: 0.850262 [32064/60000]
loss: 0.917320 [38464/60000]
loss: 0.868384 [44864/60000]
loss: 0.905506 [51264/60000]
loss: 0.856353 [57664/60000]
Test Error:
Accuracy: 68.3%, Avg loss: 0.858248
Epoch 9
-------------------------------
loss: 0.889765 [ 64/60000]
loss: 0.951220 [ 6464/60000]
loss: 0.717035 [12864/60000]
loss: 0.911042 [19264/60000]
loss: 0.786085 [25664/60000]
loss: 0.798370 [32064/60000]
loss: 0.874939 [38464/60000]
loss: 0.832796 [44864/60000]
loss: 0.863254 [51264/60000]
loss: 0.819742 [57664/60000]
Test Error:
Accuracy: 69.5%, Avg loss: 0.818780
Epoch 10
-------------------------------
loss: 0.836395 [ 64/60000]
loss: 0.910220 [ 6464/60000]
loss: 0.668506 [12864/60000]
loss: 0.874338 [19264/60000]
loss: 0.754805 [25664/60000]
loss: 0.758453 [32064/60000]
loss: 0.840451 [38464/60000]
loss: 0.806153 [44864/60000]
loss: 0.830360 [51264/60000]
loss: 0.790281 [57664/60000]
Test Error:
Accuracy: 71.0%, Avg loss: 0.787271
Done!
进一步阅读:
芸芸小站首发,阅读原文:http://www.xiaoyunyun.net/index.php/archives/317.html